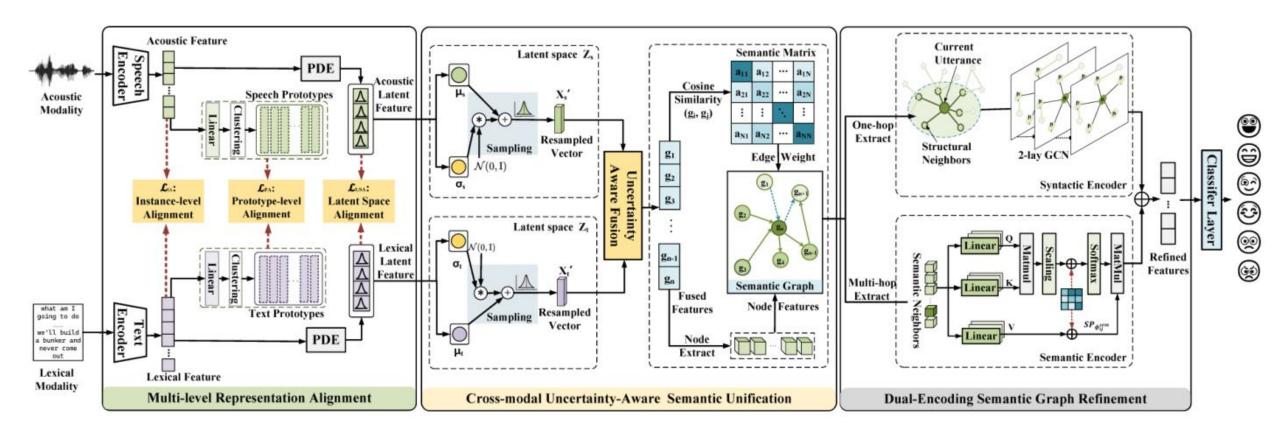
A Multi-Level Alignment and Cross Modal Unified Semantic Graph Refinement Network for Conversational Emotion Recognition

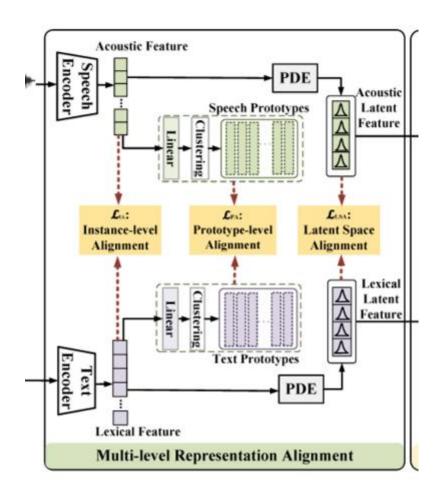
Xiaoheng Zhang, Weigang Cui, Bin Hu, Fellow, IEEE, and Yang Li, Senior, IEEE

Code:https://github.com/zxiaohen/MA-CMU-SGRNet

IEEE Transactions on Affective Computing 2024

2024. 3. 17 • ChongQing


Motivation


(1) The method of supervised contrastive learning is too tough.

(2) Previous fusion methods did not consider the uncertainty in each modal

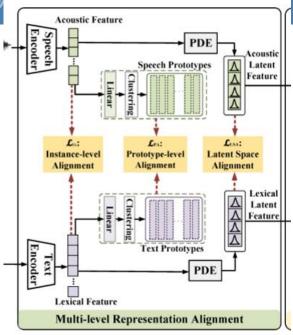
(3) Previous methods did not fully mine the semantic context information in the conversation

Overview

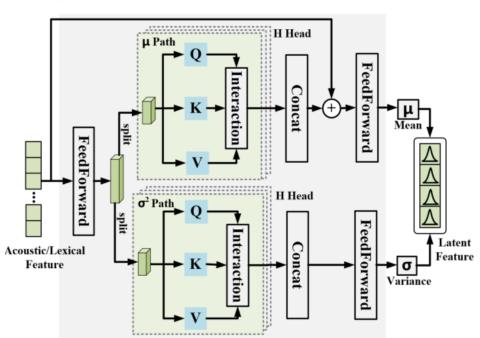
$$S_{i,j}^{(0)} = exp\left(\frac{1}{\tau_1} \cdot \frac{z_i^T z_j}{\|z_i\| \|z_i\|}\right), z \in \{\tilde{s}, \tilde{t}\}$$
 (1)

$$S_{i,j}^{(1)} = exp\left(\frac{1}{\tau_1} \cdot \frac{z_i^T z_j}{\|z_i\| \|z_j\|} - \xi\right), z \in \{\tilde{s}, \tilde{t}\}$$
 (2)

$$S_{i,j} = exp\left(\frac{1}{\tau_{m(i,j)}} \cdot \frac{z_i^T z_j}{\|z_i\| \|z_j\|} - \xi_{m(i,j)}\right), z \in \{\tilde{s}, \tilde{t}\}$$
 (3)


$$l_i^{s2t} = -\frac{1}{|P(i)|} \sum_{j \in P(i)} \log \frac{S_{i,j}}{S_{i,j} + \sum_{n \in N(i)} S_{i,n}}$$
(4)

$$l_i^{t2s} = -\frac{1}{|P(i)|} \sum_{j \in P(i)} \log \frac{S_{j,i}}{S_{j,i} + \sum_{n \in N(i)} S_{n,i}}$$
 (5)


$$j\in P(i)=\{j|j\in\mathcal{B},y_j=y_i,S_{i,j}>1\}$$

$$\mathcal{L}_{IA} = \frac{1}{2N_p} \sum_{i=1}^{N_p} (l_i^{s2t} + l_i^{t2s}) \tag{6}$$

Changaina Lhiversity

$$p_{s,i}^{k} = \frac{exp\left(\tilde{s}_{i}^{T}c_{k}/\tau_{2}\right)}{\sum_{k} exp\left(\tilde{s}_{i}^{T}c_{k}/\tau_{2}\right)}$$
(7)

$$p_{t,i}^{k} = \frac{exp\left(\tilde{t}_{i}^{T}c_{k}/\tau_{2}\right)}{\sum_{k} exp\left(\tilde{t}_{i}^{T}c_{k}/\tau_{2}\right)}$$
(8)

$$l(\tilde{s}_i, q_{t,j}) = \sum_{k=1}^{K} q_{t,i}^{(k)} \log p_{s,i}^{(k)}$$
 (9)

$$l(\tilde{t}_i, q_{s,j}) = \sum_{k=1}^K q_{s,i}^{(k)} \log p_{t,i}^{(k)}$$
(10)

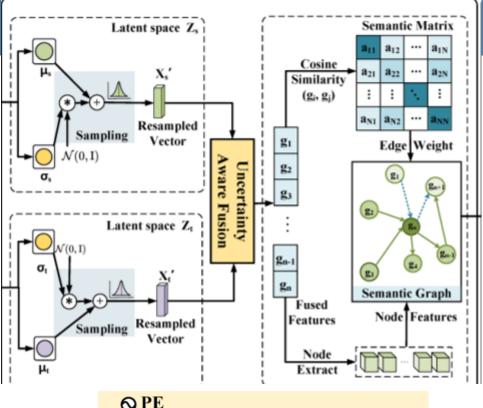
$$\mathcal{L}_{PA} = \frac{1}{2N_p} \sum_{i=1}^{N_p} (l(\tilde{s}_i, q_{t,i}) + l(\tilde{t}_i, q_{s,i}))$$
 (11)

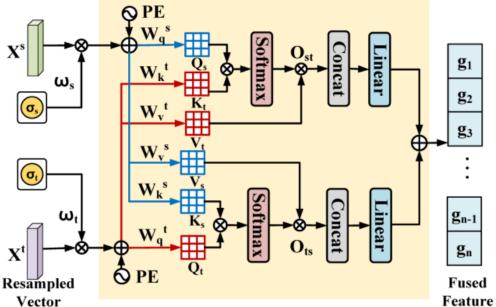
$$\mathcal{L}_{LSA} = \frac{1}{2N_p} \sum_{i=1}^{N_p} (\|\mu_{s,i} - \mu_{t,i}\|_2^2 + \|\sigma_{s,i} - \sigma_{t,i}\|_2^2)^{\frac{1}{2}}$$
 (12)

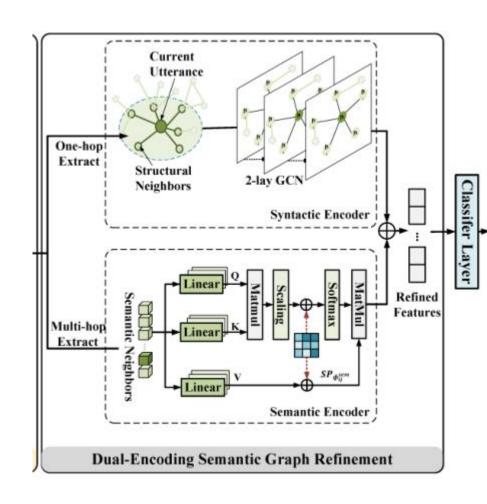
$$\mathcal{L}_A = \gamma_1 \mathcal{L}_{IA} + \gamma_2 \mathcal{L}_{PA} + \gamma_3 \mathcal{L}_{LSA} \tag{13}$$

$$\omega_t = \frac{\|\sigma_t\|}{\|\sigma_s\| + \|\sigma_t\|} \tag{15}$$

$$\tilde{X}^s = \omega_s \odot X^s \tag{16}$$


$$\tilde{X}^t = \omega_t \odot X^t \tag{17}$$


$$Q_s = \tilde{X}^s W_q^s \tag{18}$$


$$K_t = \tilde{X}^t W_k^t \tag{19}$$

$$V_t = \tilde{X}^t W_v^t \tag{20}$$

$$O_{st} = softmax(Q_s^T K_t) \cdot V_t \tag{21}$$

$$\mathcal{M}_{i,j}^{s} = 1 - \arccos\left(\frac{g_i^T g_j}{\|g_i\| \|g_j\|}\right), \ i, j \in [1, N]$$
 (22)

$$H_i^{(l+1)} = F(\sum_{r \in R} \sum_{j \in G_i^r} \frac{1}{|G_i^r|} W_r^{(l)} g_j^{(l)} + W_0^{(l)} g_i^{(l)}) (23)$$

$$SP_{\phi_{ij}^{sem}} = \mathcal{M}_{i,j}^s + \mathcal{M}_{i,j}^p \tag{24}$$

$$a_{i,j} = \frac{(W_q g_i)^T (W_k g_j)}{\sqrt{d_f}} + SP_{\phi_{ij}^{sem}}$$
 (25)

$$\tilde{h}_i = ReLU(W_f h_i + b_f) \tag{27}$$

$$\beta_i = softmax(W_p \tilde{h}_i + b_p) \tag{28}$$

$$\widehat{y}_i = argmax(\beta_i) \tag{29}$$

$$\mathcal{L}_{cl} = -\frac{1}{\sum_{i=1}^{L} N_i} \sum_{i=1}^{L} \sum_{c=1}^{C_0} y_{i,c}^{(j)} \cdot \log \hat{y}_{i,c}^{(j)}$$
(30)

$$\mathcal{L}_{total} = \mathcal{L}_{cl} + \lambda \, \mathcal{L}_{A} \tag{31}$$

TABLE I: COMPARISON WITH THE STATE-OF-THE-ART METHODS ON IEMOCAP DATASET.

	Year	IEMOCAP: Emotion Categories													
Models		Нарру		Sad		Neutral		Angry		Excited		Frustrated		Average	
		Acc.	F1	Acc.	F1	Acc.	F1	Acc.	F1	Acc.	F1	Acc.	F1	WAA	WAF1
Bc-LSTM [44]	2017	22.5	35.6	58.6	69.2	56.5	53.5	70.0	66.3	58.8	61.1	67.4	62.4	59.8	59.0
DialogueRNN [12]	2019	31.25	33.8	66.1	69.8	63.0	57.7	61.7	62.5	61.5	64.4	59.6	59.5	59.3	59.8
CTNet [3]	2021	47.9	51.3	78.0	79.9	69.0	65.8	72.9	67.2	85.3	78.7	52.2	58.8	68.0	67.5
A-DMN [11]	2022	43.1	50.6	69.4	76.8	63.0	62.9	63.5	56.5	88.3	77.9	53.3	55.7	64.6	64.3
I-GCN [14]	2022	51.4	50.0	85.3	83.8	60.4	59.3	61.2	64.6	75.6	74.3	57.2	59.0	65.5	65.4
GraphCFC [16]	2023	-	43.1	-	85.0	-	64.7	-	71.4	-	78.9	-	63.7	-	68.9
Ours	2023	52.6	57.1	78.8	79.9	74.3	71.0	75.2	71.5	80.3	78.4	65.1	67.5	72.4	71.6

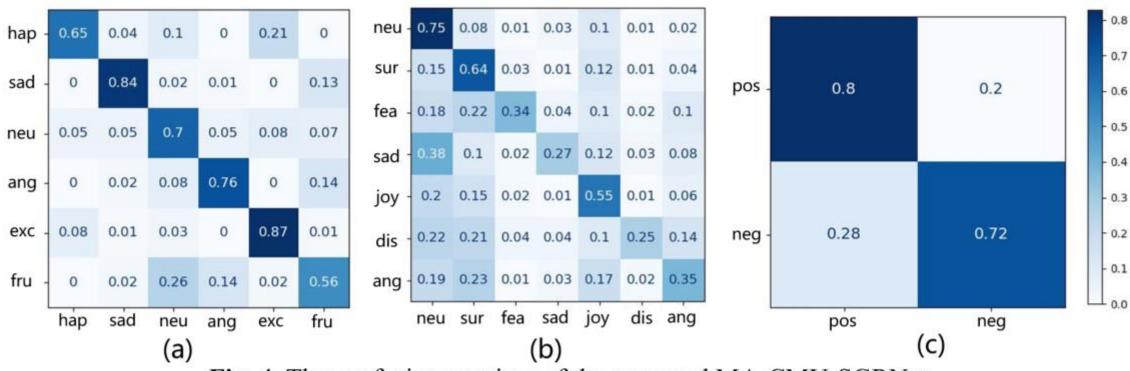

The improvement is statistically significant with $p \le 0.05$ under t-test. Bold font represents the best performance. Acc. = Accuracy.

TABLE II: COMPARISON WITH THE STATE-OF-THE-ART METHODS ON MELD DATASET.

		MELD: Emotion Categories								
Models	Year	Anger	Disgust	Fear	Joy	Neutral	Sadness	Surprise	Avg	
		F1	F1	F1	F1	F1	F1	F1	WAF1	
Bc-LSTM [44]	2017	43.4	23.7	9.4	54.5	76.7	24.3	51.0	59.3	
DialogueRNN [12]	2019	43.7	7.9	11.7	54.4	77.4	34.6	52.5	60.3	
CTNet [3]	2021	44.6	11.2	10.0	56.0	77.4	32.5	52.7	60.5	
A-DMN [11]	2022	43.9	7.2	12.0	56.7	77.1	29.1	55.1	60.4	
I-GCN [14]	2022	43.5	11.8	8.0	54.7	78.0	38.5	51.6	60.8	
CMCF-SRNet [15]	2023	43.9	10.9	11.5	55.8	77.2	36.0	52.9	61.8	
Ours	2023	44.3	11.9	12.1	56.9	78.4	35.9	53.5	62.3	

TABLE III PERFORMANCE ON CMU-MOSEI DATASET.

3.6.4.1	CMU-MOSEI							
Methods	Year	WAA	WAF1					
GMFN [42]	2017	76.9	77.0					
MulT [48]	2019	82.5	82.3					
MMIM [49]	2021	85.9	85.9					
CONKI [50]	2023	86.2	86.1					
Ours	2023	86.9	86.8					

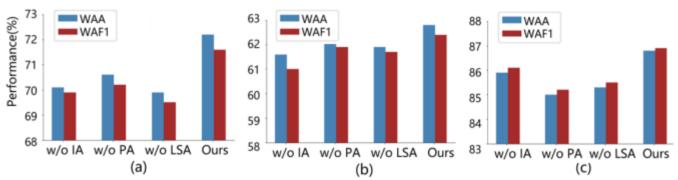


Fig. 4. The confusion matrices of the proposed MA-CMU-SGRNet on three datasets. (a) IEMOCAP (b) MELD (c) CMU-MOSEI

TABLE IV
RESULTS OF ABLATION STUDIES ON THREE DATASETS.

Methods	IEMOCAP	MELD	CMU-MOSEI		
	WAA WAF1	WAA WAF1	WAA WAF1		
w/o UW	68.9±0.48 [†] 67.6±0.61 [†]	60.3±0.34 [†] 59.7±0.75 [†]	83.7±0.73 [†] 84.1±0.52*		
w/o CMI	68.1±0.61 [†] 67.4±0.35 [†]	60.5±0.73 [†] 59.9±0.42*	82.8±0.54 [†] 83.2±0.42 [†]		
w/o SyE	68.3±0.73 [†] 66.4±0.54 [†]	61.7±0.64* 61.4±0.52*	83.2±0.45 [†] 83.6±0.56*		
w/o SeE	68.8±0.53 [†] 67.9±0.67 [†]	59.5±0.32 [†] 59.2±0.47 [†]	82.9±0.54 [†] 83.1±0.65 [†]		
Ours	72.4±0.61 71.6±0.73	62.8±0.54 62.3±0.62	86.9±0.66 86.8±0.92		

where the symbols † and * indicate that the difference with respect to the ablation setting is statistically significant at p < 0.001 † and p < 0.01 * under *t*-test.

Fig. 5. Comparison of WAA and WAF1 on three datasets. (a) IEMOCAP (b) MELD (c) CMU-MOSEI.

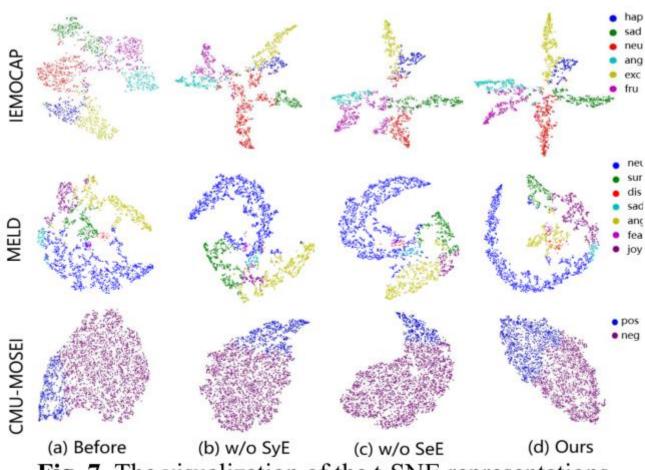
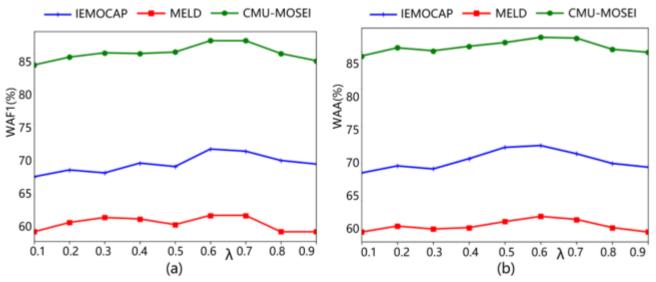



Fig. 7. The visualization of the t-SNE representations

Fig. 8. Comparison of WAA and WAF1 on three datasets. (a) IEMOCAP (b) MELD (c) CMU-MOSEI.

Thanks!